1Maya Rianti Amalia, 2Prasetyowati Subchan
1Postgraduate student of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
2Department of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
DOI : https://doi.org/10.47191/ijmra/v6-i12-50Google Scholar Download Pdf
ABSTRACT:
Prolonged exposure to high intensity UVB rays can induce the formation of Reactive Oxygen Species (ROS) which causes MITF activation thereby inducing melanin synthesis. Compounds contained in petai peel extract are known to play a role in inhibiting ROS production due to exposure to UVB rays. This study aims to determine the effect of administering petai peel extract gel on MITF gene expression and the amount of melanin in the skin tissue of mice exposed to high-intensity UVB. The research design was posttest only control group with a completely randomized design method. The samples studied were 24 mice exposed to UVB light with a wavelength of 302 nm and an energy of 390 mJ/cm2/day 3 times a week for 2 weeks. This research was carried out in four groups, namely the healthy group (K1), the negative control group (K2), treatment 1 (K3) with 10% petai peel extract gel and treatment 2 (K4) with 20% petai peel extract gel. MITF gene expression was analyzed using qRT-PCR and melanin was observed by specific staining with fontana-masson. qRT-PCR analysis showed that there was a significant decrease in MITF gene expression between groups K4 and K3 compared to group K2. Analysis of the amount of melanin also showed that there was a significant decrease in the mean in the K3 and K4 groups compared to K2 with a p value <0.05. Administration of petai peel extract gel can reduce the expression of the MITF gene and the amount of melanin in hyperpigmentation mice exposed to UVB light.
KEYWORDS:UVB exposure, petai peel extract, MITF, melanin
REFERENCES1) Dale Wilson B, Moon S, Armstrong F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J Clin Aesthet Dermatol. 2012 Sep;5(9):18–23.
2) Merin KA, Shaji M, Kameswaran R. A Review on Sun Exposure and Skin Diseases. Indian J Dermatol. 2022;67(5):625.
3) Amaro-Ortiz A, Yan B, D’Orazio J. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation. Molecules. 2014 May 15;19(5):6202–19.
4) Durai PC, Thappa DM, Kumari R, Malathi M. Aging in elderly: chronological versus photoaging. Indian J Dermatol. 2012 Sep;57(5):343–52.
5) Hughes MCB, Williams GM, Pageon H, Fourtanier A, Green AC. Dietary Antioxidant Capacity and Skin Photoaging: A 15-Year Longitudinal Study. Journal of Investigative Dermatology. 2021 Apr;141(4):1111-1118.e2.
6) Samson N, Fink B, Matts PJ. Visible skin condition and perception of human facial appearance. Int J Cosmet Sci. 2010 Nov 3;32(3):167–84.
7) Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules. 2020 Mar 27;25(7):1537.
8) Markiewicz E, Idowu O.
Melanogenic Difference Consideration in Ethnic Skin Type: A Balance Approach Between Skin Brightening Applications and Beneficial Sun Exposure
. Clin Cosmet Investig Dermatol. 2020 Mar;Volume 13:215–32.9) Tangau MJ, Chong YK, Yeong KY. Advances in cosmeceutical nanotechnology for hyperpigmentation treatment. Vol. 24, Journal of Nanoparticle Research. Springer Science and Business Media B.V.; 2022.
10) Couteau C, Coiffard L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics. 2016 Jul 25;3(3):27.
11) Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α‐arbutin. Phytotherapy Research. 2021 Aug 16;35(8):4136–54.
12) Isromi T, Winahyu DA, Tutik T. Uji Efektivitas Ekstrak Kulit Petai (Parkia Speciosa) Sebagai Antiinflamasi Terhadap Tikus Putih (Rattus Novergicus) Jantan Galur Wistar Yang Di Induksi Karagenan. Jurnal Ilmu Kedokteran dan Kesehatan. 2023 Apr 9;10(3):1605–14.
13) Maulana I, Kurniati Roddu A, Suriani S. Uji Efektifitas Ekstrak Kulit Petai (Parkia speciosa Hassk) Terhadap Mencit (Mus musculus) Sebagai Anti Inflamasi. Lumbung Farmasi: Jurnal Ilmu Kefarmasian. 2020 Jul 20;1(2):80.
14) Azemi AK, Nordin ML, Hambali KA, Noralidin NA, Mokhtar SS, Rasool AHG. Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants. 2022 Feb 21;11(2):431.
15) Kamisah Y, Othman F, Qodriyah HMS, Jaarin K. Parkia speciosa Hassk.: A Potential Phytomedicine. Evidence-Based Complementary and Alternative Medicine. 2013;2013:1–9.
16) Azemi AK, Nordin ML, Hambali KA, Noralidin NA, Mokhtar SS, Rasool AHG. Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants (Basel). 2022 Feb 21;11(2).
17) Rianti A, Parassih EK, Novenia AE, Christpoher A, Lestari D, Kiyat W El. Potensi Ekstrak Kulit Petai (Parkia speciosa) Sebagai Sumber Antioksidan. Jurnal Dunia Gizi. 2018 Nov 15;1(1):10.
18) Saleh MSM, Jalil J, Zainalabidin S, Asmadi AY, Mustafa NH, Kamisah Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int J Mol Sci. 2021 Jan 9;22(2):618.
19) Mustafa Khalid N, Babji AS. Antioxidative and Antihypertensive Activities of Selected Malaysian ulam (salad), Vegetables and Herbs. J Food Res. 2018 Mar 30;7(3):27.
20) Ghasemzadeh A, Jaafar HZE, Bukhori MFM, Rahmat MH, Rahmat A. Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem Cent J. 2018 Dec 7;12(1):12.
21) Gui JS, Jalil J, Jubri Z, Kamisah Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology. 2019 Feb 1;71(1):79–89.
22) Wawrzyk-Bochenek I, Rahnama M, Stachura M, Wilczyński S, Wawrzyk A. Evaluation of the Reduction of Skin Hyperpigmentation Changes under the Influence of a Preparation Containing Kojic Acid Using Hyperspectral Imaging—Preliminary Study. J Clin Med. 2023 Apr 1;12(7).
23) Hori I, Nihei K ichi, Kubo I. Structural criteria for depigmenting mechanism of arbutin. Phytotherapy Research. 2004 Jun;18(6):475–9.
24) Galván I, Wakamatsu K, Alonso-Alvarez C, Solano F. Buthionine sulfoximine diverts the melanogenesis pathway toward the production of more soluble and degradable pigments. Bioorg Med Chem Lett. 2014 May;24(9):2150–4.
25) Cano M, Guerrero-Castilla A, Nabavi SM, Ayala A, Argüelles S. Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds. Food and Chemical Toxicology. 2019 Sep;131:110544.
26) Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular Senescence and Inflammaging in the Skin Microenvironment. Int J Mol Sci. 2021 Apr 8;22(8):3849.
27) López-Camarillo C, Aréchaga Ocampo E, López Casamichana M, Pérez-Plasencia C, Álvarez-Sánchez E, Marchat LA. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis. Int J Mol Sci. 2011 Dec 23;13(1):142–72.
28) Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, et al. ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med. 2009 Feb;46(3):339–51.
29) Lee SJ. Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int J Mol Med. 2011 Oct 3;
30) Kim DS, Park SH, Park KC. Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol. 2004 Aug;36(8):1482–91.
31) Hwang YP, Oh KN, Yun HJ, Jeong HG. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J Dermatol Sci. 2011 Jan;61(1):23–31.
32) Butarbutar RH, Robiyanto R, Untari EK. Potensi Ekstrak Etanol Daun Petai (Parkia speciosa Hassk.) Terhadap Kadar Superoksida Dismutase (SOD) Pada Plasma Tikus yang Mengalami Stres Oksidatif. Pharmaceutical Sciences and Research. 2016 Aug;3(2):97–106.
33) Zhan JYX, Wang XF, Liu YH, Zhang ZB, Wang L, Chen JN, et al. Andrographolide sodium bisulfate prevents uv-induced skin photoaging through inhibiting oxidative stress and inflammation. Mediators Inflamm. 2016;2016.
34) Siow HL, Gan CY. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chem. 2013;141(4):3435–42.
35) Izzah Ahmad N, Abdul Rahman S, Leong YH, Azizul NH. A Review on the Phytochemicals of Parkia Speciosa, Stinky Beans as Potential Phytomedicine. J Food Sci Nutr Res. 2019;02(03).
36) Iqbal IY. Pemberian krim ekstrak etanol biji petai (parkia speciosa) 20% sama efektif dengan krim Hidrokuinon 4% dalam menghambat Pembentukan jumlah melanin pada kulit Marmut (cavia porcellus) yang dipapar sinar Ultraviolet B. [Denpasar]: Universitas Udaya; 2019.
37) Wijayanti A. Karakteristik Ekstrak Kulit Petai (Parkia speciosa Hassk) dengan Pelarut Ethanol 70% dan etil Asetat. Jurnal Ilmu Kesehatan Bhakti Setya Medika. 2021 Dec 25;6(2):123–7.
38) Al Batran R, Al-Bayaty F, Jamil Al-Obaidi MM, Abdualkader AM, Hadi HA, Ali HM, et al. In Vivo Antioxidant and Antiulcer Activity of Parkia speciosa Ethanolic Leaf Extract against Ethanol-Induced Gastric Ulcer in Rats. PLoS One. 2013 May 28;8(5):e64751.
39) Chen YS, Lee SM, Lin CC, Liu CY. Hispolon Decreases Melanin Production and Induces Apoptosis in Melanoma Cells through the Downregulation of Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expressions and the Activation of Caspase-3, -8 and -9. Int J Mol Sci. 2014 Jan 17;15(1):1201–15.
40) Wei B, Zhang YP, Yan HZ, Xu Y, Du TM. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Biochem Biophys Res Commun. 2014 Jan;443(2):617–21.
41) Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys. 2014 Dec;563:28–34.
42) Lee SE, Park SH, Oh SW, Yoo JA, Kwon K, Park SJ, et al. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK–mediated pathways. Sci Rep. 2018 Oct 8;8(1):14958.
43) D’Mello S, Finlay G, Baguley B, Askarian-Amiri M. Signaling Pathways in Melanogenesis. Int J Mol Sci. 2016 Jul 15;17(7):1144.
44) Baxter LL, Pavan WJ. The etiology and molecular genetics of human pigmentation disorders. Wiley Interdiscip Rev Dev Biol. 2013 May;2(3):379–92.
45) Videira IF dos S, Moura DFL, Magina S. Mechanisms regulating melanogenesis*. An Bras Dermatol. 2013 Feb;88(1):76–83.
46) Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, et al. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci. 2020 Aug 25;21(17):6129.
47) Lee SJ, Lee WJ, Chang SE, Lee GY. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res. 2015 Jul;39(3):238–42.
48) Wang JH, Hwang SJ, Lee SK, Choi Y, Byun CK, Son CG. Anti-Melanogenic Effects of Fractioned Cynanchum atratum by Regulation of cAMP/MITF Pathway in a UVB-Stimulated Mice Model. Cells. 2023 May 14;12(10):1390.
49) Jablonski NG, Chaplin G. Human skin pigmentation as an adaptation to UV radiation. Proceedings of the National Academy of Sciences. 2010 May 11;107(supplement_2):8962–8.
50) Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007 Feb 21;445(7130):843–50.
51) Kumari S, Thng S, Verma N, Gautam H. Melanogenesis Inhibitors. Acta Dermato Venereologica. 2018;98(10):924–31.
52) Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem. 2018 Sep 13;61(17):7395–418.
53) Nguyen NT, Fisher DE.
54) Vance KW, Goding CR. The Transcription Network Regulating Melanocyte Development and Melanoma. Pigment Cell Res. 2004 Aug;17(4):318–25.
55) Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ETH, et al. Regulation of Microphthalmia-Associated Transcription Factor MITF Protein Levels by Association with the Ubiquitin-Conjugating Enzyme hUBC9. Exp Cell Res. 2000 Mar;255(2):135–43.
56) Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, et al. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci Rep. 2017 Apr 10;7(1):45858.
57) Hong Y, Song B, Chen HD, Gao XH. Melanocytes and Skin Immunity. Journal of Investigative Dermatology Symposium Proceedings. 2015 Jul;17(1):37–9.
58) Nishio T, Usami M, Awaji M, Shinohara S, Sato K. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol Cell Biochem. 2016 Jan 23;412(1–2):101–10.
59) Wellbrock C, Arozarena I. Microphthalmia‐associated transcription factor in melanoma development and
60) Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007 Nov;13(11):460–9.
61) Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin Pigmentation Types, Causes and Treatment—A Review. Molecules. 2023 Jun 18;28(12):4839.
62) Moolla S, Miller-Monthrope Y. Dermatology: how to manage facial hyperpigmentation in skin of colour. Drugs Context. 2022 May 31;11:1–14.
63) Nguyen NT, Fisher DE. MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res. 2019 Mar;32(2):224–36.
64) Integrated Taxonomic Information System. Taxonomic Hierarchy: Parkia speciosa Hassk. 2023.
65) Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Front Pharmacol. 2019 Oct 31;10.
66) Qin Z, Balimunkwe RM, Quan T. Age‐related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo. British Journal of Dermatology. 2017 Nov;177(5):1337–48.
67) Martinez-Esparza M, Jimenez-Cervantes C, Solano F, Lozano JA, Garcia-Borron JC. Mechanisms of melanogenesis inhibition by tumor necrosis factor-α in B16/F10 mouse melanoma cells. Eur J Biochem. 1998 Jul 1;255(1):139–46.
68) Kim DS, Park SH, Park KC. Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol. 2004 Aug;36(8):1482–91.
69) Liu F, Fu Y, Meyskens FL. MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. Journal of Investigative Dermatology. 2009 Feb;129(2):422–31.
70) Kaminski K, Kazimierczak U, Kolenda T. Oxidative stress in melanogenesis and melanoma development. Vol. 26, Wspolczesna Onkologia. Termedia Publishing House Ltd.; 2022. p. 1–7.
71) Ishikawa Y, Bächinger HP. A molecular ensemble in the rER for procollagen maturation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2013 Nov;1833(11):2479–91.
72) Zhao W, Wang X, Sun KH, Zhou L. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis. PLoS One. 2018 Jan 10;13(1):e0191031.
73) Wölfle U, Esser PR, Simon-Haarhaus B, Martin SF, Lademann J, Schempp CM. UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic Biol Med. 2011;50(9):1081–93.
74) Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Investigation of oxidative stress markers and antioxidant enzymes activity in newly diagnosed type 2 diabetes patients and healthy subjects, association with IL-6 level. J Diabetes Metab Disord. 2019;18(2):437–43.
75) Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017;1863(2):585–97. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.11.005
76) Shin JM, Kim MY, Sohn KC, Jung SY, Lee HE, Lim JW, et al. Nrf2 negatively regulates melanogenesis by modulating PI3K/Akt signaling. PLoS One. 2014 Apr 24;9(4).
77) Garufi A, Pistritto G, D’orazi V, Cirone M, D’orazi G. The Impact of NRF2 Inhibition on Drug-Induced Colon Cancer Cell Death and p53 Activity: A Pilot Study. Biomolecules. 2022 Mar 1;12(3).
78) Addor FAS. Antioxidants in dermatology. An Bras Dermatol. 2017;92(3):356–62.
79) Arauz J, Ramos-Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann Hepatol. 2016;15(2):160–73.
80) Addor FAS. Antioxidants in dermatology. An Bras Dermatol. 2017;92(3):356–62.
81) A. Satyanarayana D, K. Kulkarni P, G. Shivakumar H. Gels and Jellies as a Dosage Form for Dysphagia Patients: A Review. Curr Drug ther. 2011;6(2):79–86.
82) Bowlby M, Blume P, Schmidt B, Donegan R. Safety and efficacy of Becaplermin gel in the treatment of diabetic foot ulcers. Chronic Wound Care Management and Research. 2014;11.
83) Mayori H, . K, . M, Purnama D, Maulina Sari R. Systematic Review Efektivitas Limbah Kulit Petai (Parkia speciosa Hassk) sebagai Fitomedicine untuk Mengobati Masalah Kesehatan Tertentu. JURNAL BIOSHELL. 2023 Apr 27;12(1):66–76.
84) Varela MT, Ferrarini M, Mercaldi VG, Sufi B da S, Padovani G, Nazato LIS, et al. Coumaric acid derivatives as tyrosinase inhibitors: Efficacy studies through in silico, in vitro and ex vivo approaches. Bioorg Chem. 2020 Oct;103:104108.
85) Ke Y, Wang XJ. TGFβ Signaling in Photoaging and UV-Induced Skin Cancer. Journal of Investigative Dermatology. 2021 Apr;141(4):1104–10.
86) Pandel R, Poljšak B, Godic A, Dahmane R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol. 2013 Sep 12;2013:930164.
87) Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 2014 Jul;27(4):512–24.
88) Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative Stress in Aging Human Skin. Biomolecules. 2015 Apr 21;5(2):545–89.
89) Domaszewska-Szostek A, Puzianowska-Kuźnicka M, Kuryłowicz A. Flavonoids in Skin Senescence Prevention and Treatment. Int J Mol Sci. 2021 Jun 25;22(13):6814.
90) Wu PY, Lyu JL, Liu YJ, Chien TY, Hsu HC, Wen KC, et al. Fisetin regulates Nrf2 expression and the inflammation-related signaling pathway to prevent UVB-induced skin damage in hairless mice. Int J Mol Sci. 2017;18(10).
91) Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. In: Journal of Investigative Dermatology Symposium Proceedings. Nature Publishing Group; 2008. p. 20–4.
92) Iqbal IY. Pemberian Krim Ekstrak Etanol Biji Petai (Parkia Speciosa) 20% Sama Efektif Dengan Krim Hidrokuinon 4% Dalam Menghambat Pembentukan Jumlah Melanin Pada Kulit Marmut (Cavia Porcellus) Yang Dipapar Sinar Ultraviolet B Irah Yunita Iqbal. Denpasar, Indonesia;
93) You YJ, Wu PY, Liu YJ, Hou CW, Wu CS, Wen KC, et al. Sesamol inhibited ultraviolet radiation-induced hyperpigmentation and damage in C57BL/6 mouse skin. Antioxidants. 2019;8(7):1–16.
94) Kim HY, Sah SK, Choi SS, Kim TY. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes. Life Sci [Internet]. 2018;210:201–8. Available from: https://doi.org/10.1016/j.lfs.2018.08.056
95) Chhikara N, Devi HR, Jaglan S, Sharma P, Gupta P, Panghal A. Bioactive compounds, food applications and health benefits of Parkia speciosa (stinky beans): A review. Vol. 7, Agriculture and Food Security. BioMed Central Ltd.; 2018.
96) Gui JS, Jalil J, Jubri Z, Kamisah Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology. 2019 Feb 15;71(1):79–89.
97) Lee SE, Park SH, Oh SW, Yoo JA, Kwon K, Park SJ, et al. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK–mediated pathways. Sci Rep. 2018;8(1):1–12.
98) Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. Journal of Biological Chemistry. 2012;287(22):17996–8004.
99) Kim SS, Kim MJ, Choi YH, Kim BK, Kim KS, Park KJ, et al. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac J Trop Biomed. 2013;3(8):617–22.
100)Nishioka E, Funasaka Y, Kondoh H, Chakraborty AK, Mishima Y, Ichihashi M. Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Vol. 9, Melanoma Research. 1999. p. 433–43.
Volume 06 Issue 12 December 2023
There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 07 Issue 11 (November 2024).
PUBLICATION DATES:
1) Last Date of Submission : 26 November 2024 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.